
MeshCI Workflows
defining and running workflows in Scala

2025-08-21 Jakob Odersky
1

Overview

0. Background

1. what, why, how
2. from direct-style Scala to first-class objects

2

Part 0: Background

3

About Me

- used Scala for a long time (intro was in 1.x days, when Int was int)
- independent developer
- building a software delivery platform, MeshCI

4

MeshCI

- problem statement: “releasing software built by multiple teams is a pain”
- often, either teams work quickly (in isolation) and integration is rare
- or integration is frequent and teams are slowed down
- either way, a lot of time is lost and frustration created

- why does it exist?
- very large orgs: bespoke solutions and dedicated teams
- everyone else: CI and releases is no one’s job, not mission critical

- MeshCI is a “convenient and safe” off-the-shelf solution to address this
problem

- improved developer experience and increased release speed for organizations that build
software

- main idea: track dependencies between subprojects, and run tests only affecting dependents
- be ready to release at all times

5

MeshCI: platform

Platform is built using three major subsystems

- dependency tracking
- how projects depend on one another, works for monorepos, polyrepos and anything in

between
- test gathering

- analyze test results across the whole org
- identify green builds for cutting releases
- identify flaky tests

- workflows
- run tests
- underpins most automation of MeshCI
- also usable for user-defined tasks, e.g. custom CI and releases

You can use the platform as a whole, or each subsystem independently
6

MeshCI: platform

Platform is built using three major subsystems

- dependency tracking
- how projects depend on one another, works for monorepos, polyrepos and anything in

between
- test gathering

- analyze test results across the whole org
- identify green builds for cutting releases
- identify flaky tests

- workflows
- run tests
- underpins most automation of MeshCI
- also usable for user-defined tasks, e.g. releases

You can use the platform as a whole, or each subsystem independently

almost everything
written in Scala

focus of the talk

7

Part 1: what, why, how

8

What is a workflow engine?

- Wikipedia: “a software application that manages business processes”
- in context: a system to run a bunch of software-development related tasks on

certain events
- continuous integration, delivery and deployment (CI/CD)
- tasks of a workflow have dependencies => they form a directed acyclic graph

(DAG)

9

Examples

- engine examples:
- GitHub Actions, Jenkins, Apache Airflow, Argo Workflows, Spinnaker, many many more…

- workflow examples:
- run your tests when a user creates a pull request
- build and upload binaries of your software when someone pushes a tag to your repository
- once a night, create a nightly release
- when someone tags a new container image, push a canary deployment to production, wait for

manual approval, and then scale it

10

Examples, continued

11

Examples, continued

12

Examples, continued

13

Examples, continued

14

could itself be a
workflow

Why create a new workflow engine?

Wishlist:

- define tasks in direct-style Scala
- NOT monadic or DSL-heavy
- NOT in a UI
- NOT bash-in-YAML 💩

- locally runnable
- most engines are either not locally runnable or require a lot of effort to install
- imagine you could only debug in prod

- scalable and distributed
- single machine up to whole cluster

- multiple hosting options
- piggy-back onto GitHub actions VM, deployable as standalone agents, Kubernetes clusters

15

Demo

16

What have we done?

- transform direct style into task graph
- serialize task graph
- schedule and run task graph
- reporting, analysis, ...

17

What have we done?

- transform direct style into task graph
- serialize task graph
- schedule and run task graph
- reporting, analysis, ...

leverage Scala and the JVM
for this
many ways to do this, not
really specific to Scala

18

What have we done?

- transform direct style into task graph
- serialize task graph
- schedule and run task graph
- reporting, analysis, triggering…

leverage Scala and the JVM
for this
many ways to do this, not
really specific to Scala

next part

Technology stack:
- Scala.js UI with ScalaTags

- Cask
- ScalaPB, upickle
- Mill to build it all

19

Part 2: direct-style Scala to first-class objects

20

Direct-style not sufficient for workflows

- direct-style can be executed almost as-is
- imagine no Task, only functions

- not good enough for workflows
- need to manage tasks individually

- we need to extract
- metadata
- dependencies
- body

- so that we can serialize, execute, etc

21

Syntax and structure

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

direct-style

22

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf direct-style

23

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf direct-style

24

???

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf direct-style

25

intermediate
structureserialized represented as

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

26

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

27

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

28

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

29

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

30

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

serialize Task[A] to protobuf

- most brittle is lambda
- see how Apache Spark does it

- Spores? see Jonas’ and Philipp’s
talk

31

Syntax and structure

message TaskDAG {
 message Node {
 string name;
 bytes run;
 string source;
 }
 message Edge {
 string from;
 string to;
 }
 repeated Node nodes;
 repeated Edge edges;
}

case class Task[A](
 name: String,
 deps: Seq[Task[?]],
 source: String,
 run: Env => A
)

trait Env:
 def res(t: Task[A]): A
 def log(msg: Any): Unit

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

human readable

distributable/machine executable

protobuf first-class objects direct-style

extract encoded structure

32

Kinds of structure

- syntax sugar
- where is “Env”?
- context functions

- static structure
- actual code
- metaprogramming (macros)

- see related talk on the subject: https://jakob.odersky.com/talks/zero-to-three/

val t1 = Task:
 “a”

val t2 = Task:
 “b”

val t3 = Task:
 t1() + t2()

val t4 = Task:
 log(t3())

33

https://jakob.odersky.com/talks/zero-to-three/

Context functions
 def withEnv1(run: Env => Unit) = ...

 withEnv1: env =>

 log("hello, world")(using env)

 def withEnv2(run: Env ?=> Unit) = ...

 withEnv2:

 log("hello, world")

allow declaring functions which take an implicit parameter

34

Macros
import scala.quoted.Quotes

import scala.quoted.Expr

def show1(x: Int): String = x.toString

inline def show2(inline x: Int): String = ${show2Impl('x)}

def show2Impl(using Quotes)(x: Expr[Int]): Expr[String] =

 Expr(x.show)

val x = 1

println(show1(x + 1)) // 2

println(show2(x + 1)) // x.+(1)

allow inspecting and manipulating the Scala AST itself

35

Macros
import scala.quoted.Quotes

import scala.quoted.Expr

def show1(x: Int): String = x.toString

inline def show2(inline x: Int): String = ${show2Impl('x)}

def show2Impl(using Quotes)(x: Expr[Int]): Expr[String] =

 Expr(x.show)

val x = 1

println(show1(x + 1)) // 2

println(show2(x + 1)) // x.+(1)

allow inspecting and manipulating the Scala AST itself

36

Expr[T] allows inspecting the
structure of T at compile time

returned Expr is spliced back into
the call-site

=> it will become the body of
whatever apply is assigned to

Combining macros and ctx functions

37

 val t1: Task:

 "hello"

 val t2 = Task:

 val msg = t1() + ", world"

 log(msg)

 msg

val t1 = …

val t2 = Task[String](

 name = "t2",

 deps = List(t1),

 source = "...",

 run = (env: Env) =>

 val msg = env.get(t1) + ", world"

 log(msg)(using env)

 msg

)

Combining macros and ctx functions
object Task:

 inline def apply[A](inline run: Env ?=> A): Task[A] = ${TaskMacros.applyImpl('run)}

def log(message: Any)(using env: Env): Unit = env.log(message)

38

case class Task[A](

 name: String,

 deps: Seq[Task[?]],

 source: String,

 run: Env => A

)

Macro implementation
inline def apply[A](inline run: Env ?=> A): Task[A] = ${applyImpl('run)}

def applyImpl[A: Type](using Quotes)(run: Expr[Env ?=> A]): Expr[Task[A]] =
 import scala.quoted.quotes.reflect.*

 val name: String = Symbol.spliceOwner.owner.name
 val dependencies: Seq[Expr[Task[?]]] = findDependencies(run)
 val code: String = Symbol.spliceOwner.owner.tree.pos.sourceCode.get

 '{
 Task[A](
 ${Expr(name)},
 ${Expr.ofSeq(dependencies)},
 ${Expr(code)},
 (env: Env) => $run(using env),
)
 }

39

Tree traversal
def findDependencies[A: Type](using Quotes)(tree: Expr[A]): (Seq[Expr[Task[?]]], Expr[A]) =

 import scala.quoted.quotes.reflect.*

 val deps = collection.mutable.ListBuffer.empty[Expr[Task[?]]]

 class Transformer(ctx: Expr[Env]) extends TreeMap:

 override def transformTerm(term: Term)(owner: Symbol): Term =

 term match

 case t@Apply(Select(task, "apply"), _) if task.tpe <:< TypeRepr.of[Task[?]] =>

 t.tpe.asType match

 case '[tt] =>

 deps += task.asExprOf[Task[tt]]

 '{$ctx.args(${Expr(deps.size - 1)}).asInstanceOf[tt]}.asTerm

 case _ =>

 super.transformTerm(term)(owner)

 ...

40

Going further

- Find all tasks in the workflow
- typeclass derivation
- TASTy inspection
- runtime initialization

41

Takeaways

- macros and context functions allow to write first-class objects in a direct-style
- allows us to separate code and structure

- first-class objects are then used for the rest of the system
- serialization
- analysis
- execution
- etc

- approach which allows us to have a direct surface API, but a robust
structure for everything below it

42

Wrapping up

43

How can I use it?

- it started as and is still an internal tool of MeshCI
- planning to make the runner and UI open source
- needs cleanup, disentangle from monorepo
- future work:

- integration with platforms (e.g. GitHub)
- globally hosted UI
- advanced triggers, prompting user input, custom signals
- more built-in tasks (e.g. cloning, secrets)

Follow this repo https://github.com/meshci/workflows for updates

44

https://github.com/meshci/workflows

Isn’t this a build tool?

- “isn’t everything [with a DAG] a build tool?” – Guillaume Martres
- see: Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build

Systems à la Carte.
- Excel is also a build tool!

- many modern workflow engines/CI engines/build tools are converging
- different tradeoffs in caching, retrying, triggering and interaction with

environment
- the syntax and structure is inspired by the Mill build tool, from Li Haoyi

45

https://www.microsoft.com/en-us/research/wp-content/uploads/2018/03/build-systems.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2018/03/build-systems.pdf
https://github.com/com-lihaoyi/mill

Merci beaucoup!

46

